1.  拉晶技术工艺类型

① 拉晶工艺分为Fz法和Cz法,两种工艺区分主要根据单晶硅的长晶方式不同,分为悬浮区熔法(Fz-floatzone)和直拉法(Cz-czochralski)。

② 两种工艺的技术要求区熔可以生产出高质量的高纯度单晶,但其对原料、设备和技术的要求较为苛刻,且对于多晶硅原料的尺寸要求较高,生产的晶体尺寸也较小,导致其生产成本较高。目前Fz法多应用于对硅片要求较高的半导体领域,而光伏领域主要使用Cz法。

③ 直拉法与区熔法对比

2. P型与N型硅棒

① P型与N型硅片市场占比

② N型硅与P型硅掺杂

在晶体生长过程中,若掺入微量Ⅲ族元素(如硼、镓等)可制得空穴导电的P(positive)型硅单晶;若掺入微量Ⅴ族元素(如磷、砷等)可制得电子导电的N(negative)型硅单晶。

Cz法拉制P型硅和N型硅的流程几乎相同,但由于硼在硅中更易保证均匀性,故P型硅的制备相对简单,工艺技术也更加成熟,目前在P型硅片衬底上生产的P型电池是市场主流。然而,N型电池(如异质结、TOPCon等)具有弱光响应好、温度系数低、光致衰减小等优点,有更大的效率提升空间,N型电池将会是电池技术发展的主要方向。

③ 半导体硅的P型及N型掺杂示意图

④ 太阳能级、电子级多晶硅技术指标

根据国家标准,多晶硅料可分为太阳能级和电子级,具体来讲,太阳能3级、2级硅料即可满足多晶铸锭生产需求;P型单晶单根拉制需使用太阳能1级以上硅料、多根拉制需要太阳能特级到电子3级硅料;N型单晶单根拉制需要电子3级以上硅料、多根拉制需要使用电子2级以上硅料。

3. 直拉单晶炉技术发展

根据直径划分,≤1.5英寸为第一代,≤2英寸为第二代,4-6英寸为第三代,8-12英寸第四代,从第三代开始实现直拉单晶炉控制的半自动化,到第四代基本实现了智能全自动化的升级。 目前顺应大尺寸化发展趋势,已经发展至主流160炉型(210mm向下兼容182mm),热场尺寸达36英寸以上,单炉投料量达2800kg以上。

4. 单晶炉结构示意图

5. 拉晶重要流程示意图

6. 拉晶主要步骤介绍

7. 单晶炉拉晶技术规格

8. 拉晶尺寸

拉制大硅棒可以摊薄单位成本。在158及以下尺寸的时代,主流厂家连续拉晶的单晶炉设备热屏内径一般不超过300mm,有的仅为270mm。由于166尺寸硅片的直径为223mm,对应圆棒外径约为228mm,设备不需要重大改造;而182尺寸硅片的直径为247mm,对应圆棒外径约252mm,这几乎是老旧产线最大可兼容的尺寸。但210硅片的直径已经达到了295mm,对应圆棒外径约300mm,因此原有的单晶炉设备已不能适应210硅棒的拉制。

9. 准方形硅单晶及尺寸示意图

10. 新投料工艺技术

① 多次投料复拉法(Recharged-Cz)

最早Cz法采用分批直拉(Batch-Cz),此法坩埚会因冷却破裂而无法复用,一只坩埚只能拉一根晶棒。为解决此问题,在BCz的基础上增加加料装置,拉制单根硅棒时留下部分硅熔液使坩埚保持高温,然后通过加料装置将硅料加入坩埚中进行下一根硅棒的拉制,此法称为多次投料复拉法(Recharged-Cz)。RCz法节省了晶棒冷却时间和进排气时间,且石英坩埚可以重复利用,已成为目前业界主流的拉晶工艺。

多次投料复拉法(Recharged-Cz)示意图

RCz在BCz基础上增加了加料装置

② CCz专用加料法

CCz(Continuous-Cz)法可以一边加料一边拉制晶棒,增加了拉晶效率,主要原因是符合条件的硅料较少——CCz法需要粒径更小、流动性更好颗粒硅作为原材料,但目前棒状硅依然占据95%以上的市场;此外颗粒硅产品纯度也存在一些问题;传统流化床法制备的颗粒硅中含有一定量的氢,在高温熔料时容易出现氢跳、溅硅等情况,无法直接用于单晶硅的生产。

在颗粒硅符合要求的情况下,CCz法能够进一步减少加料时间、坩埚成本和能耗,在坩埚寿命周期内可完成约10根晶棒拉制,且CCz产出晶棒电阻率更加均匀、分布更窄,品质更高。由于前文所述磷在硅中更难保证均匀性,故CCz技术的特点有望解决这一难题,更适用于拉制N型单晶硅,而且CCz法和颗粒硅搭配更易实现自动化与智能化的连续生产,有望成为下一代拉棒主流工艺。

CCz拉制工艺流程图

CCz专用加料装置及输送管道生产现场示意图